
Informatica Economică vol. 15, no. 4/2011 79

A Mining Algorithm for Extracting Decision Process Data Models

Cristina-Claudia DOLEAN, Razvan PETRUŞEL
Business Information Systems Department,

Faculty of Economics and Business Administration
Babeş-Bolyai University, Cluj-Napoca, Romania

{cristina.dolean, razvan.petrusel}@econ.ubbcluj.ro

The paper introduces an algorithm that mines logs of user interaction with simulation
software. It outputs a model that explicitly shows the data perspective of the decision process,
namely the Decision Data Model (DDM). In the first part of the paper we focus on how the
DDM is extracted by our mining algorithm. We introduce it as pseudo-code and, then,
provide explanations and examples of how it actually works. In the second part of the paper,
we use a series of small case studies to prove the robustness of the mining algorithm and how
it deals with the most common patterns we found in real logs.
Keywords: Decision Process Data Model, Decision Process Mining, Decision Mining
Algorithm

Introduction
Decision making is an activity performed

on daily basis. There are a lot of different
decision making strategies that are used by
people without being aware of them.
Therefore, most of daily decisions are the
result of an empirical process, based rather
on intuition then consciously planned and
scientifically based. Even more than in
regular life, making business decisions
without a sound decision process is
dangerous and potentially catastrophic. We
look at business decision making as a process
composed of a number of actions that can be
performed in a sequence and/or in parallel.
We argue that the quality of the overall
decision is linked to the decision actions and
their correct ordering. Therefore, in this
paper, decision making is defined as the
result of a workflow of mental actions
performed by the decision maker. We
propose a new way of researching business
decisions that aims to: explicitly show the
mental activities performed; their sequence;
and the relationships between them.
In the well-established research literature of
decision making, several researchers
proposed decompositions of the decision
process in various phases. The most common
and well known are the decision making
phases proposed by Simon in the 60s. The
first phase is a) the research of the decisional

context, then b) a number of alternatives are
created, then c) the choice of one alternative
is made and, finally, d) the chosen decision
alternative is implemented [1]. For example,
when going to a restaurant one has to decide
what to order. The context of the decision is
represented by the restaurant type, the
companions, how hungry one is, etc. The
decision alternatives are then created
according to the context (usually, the
restaurant menu is the starting point from
which a short list of dishes is selected). The
decision criterions are then used to choose
one of the dishes. Criterions can be
quantitative (e.g. how much a dish costs) or
qualitative (previous experience with a
certain taste or recommendations from the
waiter, etc.). In the short example above, the
decision phases are easily identified. But
what about the actual decision actions and
their sequence? For example, is it better to
ask the waiter for recommendations and then
read the menu or the other way around? And
how can we compare the decision process of
one person with the decision process of
another person? These are some questions
that can be answered by extracting a small-
grained model of each individual decision
process.
This paper aims to introduce an algorithm
which automatically extracts a model from
the decision activities performed by a

1

Informatica Economică vol. 15, no. 4/2011 80

decision maker. Specifically, the contribution
presented in this paper relates to the Mining
Tool (see Fig. 1) that converts a Decision
Log into a Decision Data Model (DDM). We
aim to prove the robustness and the quality of
the results produced using the Mining Tool.
Therefore, we focus on explaining how the
DDM is extracted from the logs, and on
proving that it produces the correct result, no
matter what actions are stored in the logs.
The second section explains the notions
related to the concepts of Product Data
Models (PDM) and Decision Data Models
which is essential for understanding the
mining algorithm. The third section starts by
describing our mining approach starting with
the software which allows us to store the
actions made by the user. In the second part
of the third section we show details on how
the records stored in the decision log are
converted by the Mining Tool into o DDM-
XML file. The evaluation of the results
produced by the algorithm in several case
studies is introduced in the fourth section of
this paper.

2 Related work
It is more and more clear that an open project
with a lot of contributors can achieve similar
or better result than a closed project with a
few contributors. One can think of open-
source software compared to licensed
software [e.g. Android and iOS operating
systems] or to Wikipedia papers compared to
other sources of knowledge (e.g.
Encyclopedia Britannica [2]). We argue that,
similarly, an aggregated decision model
extracted from hundreds or thousands of
decision makers can be as valuable as one
created by just a couple of experts in a field.
The advantages of a collective model are that
it: can be easier to extract automatically and
can be obtained cheaply.
The result of process mining is a model that
reflects a real life process in an enterprise [3].
In the same way we argue that, through
decision mining, we can extract a model of
the real decision process performed by a
decision maker.

We use the notions of log, trace and activity
as in process mining. The starting point for
process mining is the „event log”. Each event
log is composed of traces [4]. A trace is an
iteration through the process. Each trace is
composed of activities. An activity is an
atomic action performed by one user and is
always associated with the timestamp of its
occurrence. Therefore, one trace is an
ordered sequence of activities. We extract the
traces by the interaction of the decision
maker with the ”decision-aware software”.
The decision maker needs to look at the data
elements, compare them, calculate new data
elements and, based on those activities, make
a certain decision. All the actions performed
by all users are stored as multiple traces of
the process.
Since we look at the decision process like at
a workflow, the control-flow discovery
algorithms (e.g. Alpha, Heuristics, Fuzzy,
Genetic) created for process mining [5], [6],
[7], [8] were the starting point of our
research. However, there are some unique
features of decision making processes that
render the process mining algorithms useless.
One example of such a feature is the fact
that, in business processes, some of the traces
show up with an increased frequency (for
example, the process of issuing an invoice is
performed most of the time following the
same sequence of actions). In the real life
decision processes we researched so far, even
for simple processes we did not find exactly
the same trace twice. Therefore, we cannot
efficiently use Alpha, Heuristics and Genetic
mining algorithms because they rely at some
point on calculating the frequency with
which a certain activity (or set of activities)
occurs in the traces and the sequence of
activities.
Vanderfeesten [9] defined the notion of
Product Data Model (PDM). This is an
acyclic hyper-graph structure similar to a Bill
of Materials (BoM). But, while a BoM
represents a physical product, the PDM
represents an informational product. The role
of the PDM is to describe the structure of the
process based on the input data provided by
the user. An extension of the PDM (the

Informatica Economică vol. 15, no. 4/2011 81

Decision Data Model - DDM) was depicted
in [10] and will be elaborated on in Section 3
of this paper. We rely on this formalism to
build the graphical depiction of the decision
process. We found it better suited for the
researched issues in terms of semantics and
flexibility than other workflow models (e.g.
Petri Nets, BPMN, UML Activity Diagram).
A PDM can be manually generated based on
interviews, questionnaires or by using ‘report
while doing’ approaches. Those knowledge

acquisition methods are well established and
need no further explaining. But one must
note that they are quite expensive and
creating a model this way requires a lot of
time. Because of this and because so far we
are unaware of an automated method to
generate a decision model from certain
mental activities performed by the user, we
propose an algorithm which automatically
extracts that kind of a model.

3 Theoretical approach

Fig. 1. Overall approach over decision process mining

First, we will briefly introduce the complete
approach over decision process mining (see
Fig. 1). All starts with a large number of
users that interact with the decision-aware
system. Such a system is software that
provides: all necessary data regarding a
certain decision scenario; and some tools for
data derivation (e.g. a calculator for
performing addition, multiplication,
subtraction and division). The user needs to
make a decision based on the available data
and on the one that he derives. All the actions
performed while making the decision are
logged by the system. The exact mechanism
employed for logging is presented in [11] and
it is limited, so far, to recording the used data
and the data derivations performed by the
decision maker. As shown in Fig. 1, the log
generated by the user interaction with the
software is stored in a database. This
database consists of five tables. In Fig.
2Error! Reference source not found. we
introduce those tables along with a small data
sample in order to provide the reader with a
better understanding of the logged data.
Then, by using the Mining Tool, described
further in this paper, the logged data is

converted into a Product (Decision) Data
Model (some basic details are provided in the
second part of Section 4) which can be easily
converted further into a workflow model.
This section is continued with an
introduction to the minimal knowledge
necessary for understanding the Mining Tool.
It presents the basics of user activity logging
and the PDM/DDM formalism. This is
essential knowledge for understanding how
logged data is mined and transformed into
the output data that can be converted into a
PDM/DDM graphical representation.

3.1 Logging user interaction and storing it
as decision logs
We refer to a decision process instance (one
usage session of the software by one decision
maker) as a trace. The actions performed by
the user in the process of making a decision,
given a certain scenario (actions belonging to
a trace), are stored in the tables showed in
Figure 2. The database contains five tables:
Process_Instances, Audit_Trail_Entries,
Data_Attributes_Audit_Trail_Entries,
Data_Attributes_Process_Instances and
Decisions. Each process has a unique id

Informatica Economică vol. 15, no. 4/2011 82

which is stored in Process_Instance table. At
every change of the PI-ID we are dealing
with another decision process instance. The
user is aware of this unique id of his decision

process because it is displayed at the end of
the process, when he is inputting the chosen
decision alternative.

Fig. 2. Logging tables

We argued that the mental decision process is
exhibited to the outside as user interaction
with the decision-aware software. This
interaction is actually expressed by looking
at certain data items and clicking some of the
controls in the application’s forms and
additional tools (as the calculator). The clicks
of the user are stored in
Data_Attributes_Process_Instances table.
The Audit_Trail_Entries table stores in the
WFMElt (WorkFlow Model Element) field
the action performed by the user (for
example: click button, click menu item, click
textbox etc.) and the timestamp of each
action. The name of the textbox, buttons or
menus used by the decision maker are stored
in Data_Attributes_Audit_Trail_Entries (in
Name field) along with the actual value
displayed in the field. In case of a derived
data item, Name field stores the names of all
the data items that are aggregated in order to
calculate the value of the derived item.
The tables in Fig. 2are then queried so that
relevant data is extracted. For example, for

the trace 46 the decision maker reached a
final decision (in
Data_Attributes_Process_Instances table we
see that the user has logged-in, inputted and
saved a decision and then logged-out). Some
of the actions performed during his decision
making process was to calculate a derived
data item. For example, for this particular
trace (PI-ID 46 in table Audit_Trail_Entries),
the ATE-ID 1311 stores an action of clicking
a button which is linked to the ATE-ID 1311
in Data_Attributes_Audit_Trail_Entries table
where we can see, in the Name field, the data
items used for deriving and, in Value field,
the result of the calculation. For an extended
insight into the user interface we refer the
reader to Fig. 6 and for more details on how
the logging is actually performed to [12]
For a condensed view over the logged data, a
query extracting the most important fields is
created. For a better understanding, we will
use the data of trace 46 as a running example
throughout this paper (see Fig. 3).

Informatica Economică vol. 15, no. 4/2011 83

Fig. 3. Partial example of a Decision Log

3.2 Theoretical approach of the Decision
Data Model (DDM)
This section introduces the reader to the
notion of DDM. The DDM needs to be
understood as a representation of: the data
items used in the decision process; and the
dependencies between them.

A DDM [10] is a 3-tuple (D,O;T) with:
- D: the set of data elements, D = BD ∪ DD

∪ ID, with
• BD the set of leaf data elements
• DD the set of derived data

elements
• ID the set of data elements

inputted by the user
- O ⊆ D × P(D): the set of operations on

the data elements.
Each operation, o = (d, ds):

• has one output element d ∈ DD
and

• has a set of zero or more input
elements ds ⊆ D

- D and O form a hypergraph H = (D, O)
such that the structure of the graph is
connected and acyclic.

For better understanding the definition, we
will use the running example in Fig. 4. In this
example, the user needs to make a decision
about whether to make or not an investment.
The sets of this particular DDM are:

BD = {available_cash (XA),
investment_value (XB),
forcasted_revenues (XD),
forecasted_expenses (XE)}

ID = {no_of_months (XC)}
DD ={monthly_investment_payment
(OUTA), monthly_investment_payback,
decision (OUTB)}
O = {op1, op2, op3}

op1 = (monthly_investment_payment,
{investment_value, available_cash,
no_of_months})
op2 = (monthly_investment_payback,
{forcasted_revenues,
forecasted_expenses, no_of_months})
op3 = (decision,
{monthly_investment_payment,
monthly_investment_payback})

Fig. 4. Running example

3.3 The mining algorithm
This section introduces the main contribution
of this paper, which is the mining algorithm
implemented as a stand-alone software
(Mining Tool in Fig. 1). We will demonstrate
how a decision log (as introduced in section

Informatica Economică vol. 15, no. 4/2011 84

3.1) can be converted into a DDM (as
introduced in section 3.2).
The outline of the algorithm is:

Create date.xml
Create arrayWithDuplicates
Create arrayEgal
Create arrayX
Create arrayDerivedData
Create arrayDerivedDataName
Create Operations set
Create Data_Element set

Load XML Document
http://www.edirector.ro/processmining_v2
/export/pm.xml

Do case for each record

Case
Find_click_textbox_in_WFMEIT_Field
()=True

Add new item to
arrayWithDuplicates

 Case

Find_”=”_char_in_DAATE_Name_Field()=True
 Add new item to

arrayEgal
Endcase

For each element from

arrayWithDuplicates

existsInArray_function(arrayWithDuplicat
es,element)

 Add new item to arrayX
endfor

For each element from arrayX
 Add new item to

Data_Element set
Endfor

For each element from arrayEgal
 Subsir_function(element

arrayEgal)
 Add new item to

arrayDerivedDataName
Endfor

existsInArray_function(array,element)
 for each iterator in array
 if (element is not

null && element = iterator)
 return true
 endif
 endfor
 return false
EndexistsInArray_function

subsir_function ()
 if(element.Contains(‚(’))

Reverse_of_element
 if (lung > 0)

 Extract
element_between_ parenthesis

 Identify_element_in_arrayDerivedDa
taName

 Concatenate
„OUT”, the_next_letter_of_the_alphabet,
the_string_from_element1_starting_with_p
oz2+1 to element1

 Concatenate
„OUT”, the_next_letter_of_the_alphabet
to ddElement

 Add ddElement
to arrayDerivedData

 endif
 return

subsir_function(element1)
 else

 Delete ‚=’ from

element
 if

(!existsInArray_function(arrayDerivedDat
aName, element))

 Add element
to arrayDerivedDataName

Add
element(„OUT” ,
(char)b++) to
arrayDerivedData

 endif
endif

 return ""
endsubsir_function

existsInArray_function(array,element)
 for each iterator in array
 if (element is not

null && element = iterator)
 return true
 endif
 endfor
 return false
endexistsInArray_function

CreateDDM
 Output Operation set to XML

Output Data_Element set to XML
endCreateDDM

OBS: the algorithm outputs a PDM-XML
file that needs to be imported in Prom
5.2 so that the graphical representation
is created. Therefore, a ‘fake’ root
node needs to be added for compliance
with the PDM Plug-in in Prom 5.2. It is
connected to all the data items that are
not used in any data derivation.

To demonstrate how the algorithm works, we
will introduce the decision log of the running
example (Fig. 3). We will then go, step by
step, through the algorithm to give a better
understanding of how the DDM definition
sets are extracted.

Informatica Economică vol. 15, no. 4/2011 85

Fig. 5. Important records for extracting the basic data elements

The most important fields of the decision log
are WFMElt (Workflow Model Element) and
DAATE_Name (Data Attributes Audit Trail
Entries Name). WFMElt shows what kind of
action the user performed while
DAATE_Name stores the name of the
control (it stores the name of the textboxes
that contain the basic data items of the
decision scenario or the formula used for
calculating derived data items).
We will first focus on extracting the basic
data elements (BD) and the inputted data
elements (ID). Basically, we will explain
how we create the set:

BD = {available_cash, investment_value,
forcasted_revenues, forecasted_expenses}
from the decision log of the running example
(Fig. 3 and Fig. 5).
When the form loads all the textboxes storing
the values of the data items are empty. In
order to look at the actual figure, the user
needs to explicitly click on the textbox. For
example, the user sees there is a label (data
item) called ‘Cash and cash equivalents’ but
the textbox that shows the amount is blank
(Fig. 6a).

Fig. 6. a) the form before clicking Cash from other operations textbox and b) the form

after the user clicked the Cash from other operations basic data element

Informatica Economică vol. 15, no. 4/2011 86

When the textbox is clicked, the amount of
58625 is shown (Fig. 6b). The action of
clicking the textbox and the value shown in
the textbox is stored as a record in the
decision log (Fig. 5 second record).
Therefore, the value in the WFMEIT field we
are looking for is „click textbox” because it
shows that the decision maker used in the
decision process one of the available basic
data items.
The algorithm creates one DDM for each
trace produced after each session. First of all,
we proposed a list with all the elements of
the column „DAATE_Name” and the value
of „WFMEIT” being „click textbox”. We
named the list „arrayWithDuplicates”. The
users are allowed to click the same textbox
many times. Therefore, the data items
(textboxes) that were clicked multiple times
must be identified. The rationale behind it is
that once someone learns the value of a data
item it can be considered as a known fact.

Therefore, if the same textbox is clicked
multiple times, the duplicate records in the
decision log can be ignored. This is why
there is a function which removes duplicate
elements from arrayWithDuplicates.
Using the full name of the fields leads to
huge graphical elements (circles that have a
diagonal equal to the full name of the data
element) in the model created with Prom 5.2.
Therefore, we assigned a letter to each data
item. So, we have two uni-dimensional
arrays, one with the names of the basic data
elements (from the input XML) and one with
the short labels.
We will now focus on extracting the derived
data elements (DD). We are looking to create
the set:
DD ={monthly_investment_payment,
monthly_investment_payback}
from the records of the decision log. We are
looking at the records highlighted in Fig. 7.

Fig. 7. Important records for extracting the derived data elements

The first step is to create an array with all the
records in Name field that start with equal
sign. We named it arrayEgal.
For that we use recursive function which
applies to all elements. It is important that the
element contains the character ”(” so that we
can compare with the elements that already
exist. We copy those elements to an array
called derrivedDataName (e.g.:
cash_from_suplliers, cash_to_customers,
etc). Then, we use a second list which for
each item in the first list assigns labels (like
XA, XB, XC, etc) according to the index of

the element. Then, a derived data element
can be calculated based both on basic data
and on previously derived data (e.g. one can
first calculate A+B and then use the value to
multiply it to C, thus calculating (A+B)*C).
We created a complex function that looks for
previously calculated derived data items and
then replaces each data item with the correct
short label (letter). We will explain how this
function works using an example. In Fig. 8
we show how the third derived data element
from the log in Fig. 7 is extracted.

Informatica Economică vol. 15, no. 4/2011 87

Fig. 8. Example of processing for a derived data element

First of all, we are interested in the length of
the element (n), then we verify if the element
contains „(”. If it is true, we calculate the
position of the next „)” (poz2) and we
reverse the element (for example „
forecasted_deployment_expenses -
forecasted_revenues” will become
„seunever_detsacerof –
sesnepxe_tnemyolped_detsacerof”). Another
position (idx) that we calculate is the position
of „(” starting from the length of the
elements minus the position calculated
previously (from position n-poz2). Position
poz1 is calculated as n – idx and the value of
lung is calculated as poz2 – poz1. Then we
reversed again the element and we extracted
the string between poz1 and lung. After that
we compare that string with the elements
from the array derivedDataName (at first this
array is empty) and if the string is not found
through the elements of the array we added
it. We process similarly the array
derivedData. The algorithm stops when the
all records in Name field starting with “=”
sign have been evaluated.
Based on BD, ID, DD, and O, the
DDM/PDM structure can be created. For

creating the PDM-XML file that can be
imported in Prom 5.2, we use the items from
the strings created by the algorithm. First, we
need to define the data elements. They
consist of the elements from basic data items
(arrayX), from derived data
(arrayDerivedData) and the “fake” root
element. Next step is to define the operations.
We are not interested, at the moment, in the
arithmetical operations that were performed.
Instead, we focus on the data items that are
used to calculate a new derived data item.
Extracting the input data items of an
operation is done in two steps. First, we
properly extract the operations depicted in
the decision log (operation 1 to 3). For
example, operation 1 of our running example
(see Fig. 3) is depicted below (input and
output), where the input is represented by
XA which is the available cash, XB which is
the investment value, and XC which is the
number of months in a year. The outputted
derived data element is OUTA, which refers
to the monthly investment payment. The
structure of the PDM-XML file is:

Informatica Economică vol. 15, no. 4/2011 88

Fig. 9. PDM-XML structure mandatory for PDM Plugin in Prom 5.2

For example, the PDM-XML data outputted
for operation 1 is:

<Operation OperationID="Op1">
 <Input>
<DataElementRef>XA</DataElementRef
>
<DataElementRef>XB</DataElementRef
>
<DataElementRef>XC</DataElementRef
>
 </Input>
 <Output>
<DataElementRef>OUTA</DataElementR
ef>
</Output>
 <ResourceRef>w1</ResourceRef>
 <Condition>true</Condition>
</Operation>

The second step is to create operations for
the leaf nodes (XA, XB, XC, XD and XE).
We are creating one operation for each leaf
node (from 4 to 8). As can be seen below, for
the operation number 4 the input set is empty
and the output set is represented by the leaf
node (XA).

<Operation OperationID="Op4">
 <Input>
 </Input>
 <Output>

<DataElementRef>XA</DataElementRef>
</Output>
 <ResourceRef>w1</ResourceRef>
 <Condition>true</Condition>
</Operation>

Strictly for compliance with the PDM-XML
structure needed for properly importing the
file in Prom 5.2, at the end of the DDM is
defined the root element. All the elements
that are not present as an input of any
operation will be related directly to the root
element (for example OUTA and OUTB).

4 Evaluation of the algorithm
One of our databases with decision logs
contains a sample of 42 traces. These are
recorded from the bachelor and master level
students from Babeş-Bolyai University of
Cluj-Napoca and from the West University
of Timişoara. In other databases we store
traces from expert users (some of them work
in loan granting departments of different
banks on various decision levels, other are
expert accountants, are working in auditing
or are managers of companies that have a
long history of loan contracting) and other
bachelor-level students. We used the mining
tool introduced above to mine all those logs.
By studying the logs we recorded so far we
found some common patterns for the DDMs.
In this section we intend to analyze some
use-cases that illustrate how the mining
algorithm extracts the most common patterns
of the DDMs. The goal is to prove that the
algorithm is robust enough to correctly
extract the data processing view of the
decision processes performed by the users of
the decision-aware software.
The first use-case is when the decision maker
uses the decision-aware software only to look
at the values in some textboxes. In this case,
the decision process is clear: the user makes
his decision without using any derived data
and all the basic data items reviewed are the
criterions used for choosing an alternative.
From the Mining Tool’s point of view, only
the basic data set is built (arrayX) and the
elements are related directly to the Root
Element.
In order ease the understanding of our use-
cases, we simplified the structure of the final

Informatica Economică vol. 15, no. 4/2011 89

query of the decision log file. We only kept
the elements which are extracted by our

algorithm (Timestamp, WFMElT,
DAATE_Name and Value).

Table 1. Log sample for the first use-case

Timestamp WFMElT DAATE_Name Value
Time1 Click menu item Trial balance Trial balance
Time2 Click textbox Cash_from_customers 48943
Time3 Click textbox Cash_paid_to_suppliers 73312
Time4 Click menu item Balance sheet Balance sheet
Time5 Click textbox Cash_paid_to_suppliers 48943
Time6 Click textbox Paid_vat 58625

As we showed before, the first step of the
algorithm is to build the list/array with basic
data element and make those elements
unique. To build the basic data items sets, we
consider the items of WFMEIT value equal
to „click textbox” (records 2, 3, 5 and 6 in
Table 1). Then, the algorithm assigns to each
data item values as XA, XB, XC, etc.
Therefore Cash_from_customers will be
labeled XA, Cash_paid_to_suppliers will be
labeled XB and Paid_vat will be labeled XC.
There are cases when some elements appear
more than once in the trace. For example, in
Table 1, XB shows twice (for some reason
the user clicked the Cash_paid_to_suppliers
textbox twice). Even if XB appears more
than once in the trace, in the DDM_XML it

should show up only once because it
indicates that this particular piece of
knowledge (the total value of the invoices
issued to customers) was used in the decision
process.
Given that the trace doesn’t involve derived
data items (records in DAATE_Name field
that start with “=” character), the elements
from basic data array are directly related to
the root node and so only one element is
created in the operation set: op1 =
(ROOT,{XA,XB,XC}). As we can see in
Fig. 10, the set containing the elements
inputted by the user and the derived data
element set are empty because the user only
considered the value of some textboxes and
he didn’t perform data derivations.

Fig. 10. PDM of the first use-case

The conclusion that can be drawn by looking
at this type of model (where there are no
derived data elements) is that the user is not
sure of what he’s doing or what he should do,
and that there is no clear criterion for making
the decision. Our overall conclusion would
be that the user is making a rather intuitive
decision.

The second use-case is the one where the
decision maker calculates a derived data item
and, then, uses it in a further calculation with
a basic data item. The challenge is to identify
when a derived data item calculated
previously is used for further derivations in
conjunction with a basic data item.
Table 3 represents the simplified version of a
decision log with derived data elements.

Informatica Economică vol. 15, no. 4/2011 90

Table 2. Log sample for the second use-case
Timestamp WFMEIT DAATE_Name Value

Time1 click menu item Trial balance Trial balance
Time2 click textbox customer_invoices_value 48943
Time3 click button Minus
Time4 click textbox suppliers_invoices_value 73312
Time5 click button Add_suppliers_invoices_value suppliers_invoices_value
Time6 click button =customer_invoices_value -

suppliers_invoices_value
-24369

Time7 click button Add_(customer_invoices_value -
suppliers_invoices_value=)

(customer_invoices_value -
suppliers_invoices_value=)

Time8 click button Plus +
Time9 click menu item Balance sheet Balance sheet
Time10 click textbox cash_and_cash_equivalents 58625
Time11 click button Add_cash_and_cash_equivalents cash_and_cash_equivalents
Time12 click button =(customer_invoices_value -

suppliers_invoices_value=) +
cash_and_cash_equivalents

34256

Table 3. Simplified view of the log sample of the second use-case

Timestamp WFMEIT DAATE_Name
Time1 click menu item menu1
Time2 click textbox XA
Time3 click buton Minus
Time4 click textbox XB
Time5 click buton Add_XA
Time6 click buton =XA – XB
Time7 click buton Add_(XA - XB=)
Time8 click buton Plus
Time9 click menu item menu2
Time10 click textbox XC
Time11 click buton Add_XC
Time12 click buton =(XA-XB=) + XC

As we explained before, first step is to create
the basic data element set. In Table 2 and
Table 3, customer_invoices_value (XA),
suppliers_invoices_value (XB) and
cash_and_cash_equivalents (XC) are the
basic data items.
The second step is to find the derived data
elements. The logging mechanism
implemented in the decision-aware software
places ‚=’ (equal sign) in front of the record
that is placed in DAATE_Name field when
the user clicks the Equal Button in the
calculator area. As for the basic data items,
each derived data item is labeled by letters:
OUTA, OUTB, OUTC, etc. In this use-case
we have only two items in the derived data
set (OUTA and OUTB). Like in the first use-
case, when the user was looking only at
certain textboxes, if one element (basic or
derived) appears in the trace more than once

in the final PDM-XML it will appear once.
Once a derived data element is found, its
components are analyzed. After we have
replaced the names, we are looking for the
elements between parenthesis, so we get
OUTA= (XA – XB=) and OUTB=((XA –
XB=) – XC=). For the first derived data
element we are searching the string at the
beginning of the first mathematical sign, so
we get XA. Then we delete it and we are
looking for the next data item in the same
way (we get XB). Therefore we are
recognized XA and XB as being part of the
basic data element set. We conclude that
OUTB consists of ((XA – XB=) – XC=) and
it has more than one equal sign in his
composition. This means that we have to
look for ((XA – XB=) in the derived data
elements array. We identify this as being
OUTA and OUTB becomes OUTA - XC.

Informatica Economică vol. 15, no. 4/2011 91

Fig. 11. PDM of the second use-case

By looking at the resulting model, we can
state that the decision making process is well
structured. This is a hint that the decision
maker is well aware of the criteria used in
choosing the decision alternative and exhibits
clear knowledge of how the important
criteria can be calculated.

The third use-case is the one where the
decision maker calculates two derived data
items and, then, uses both of them in a
further calculation. The challenge is to
identify when several derived data items
calculated previously are used for further
derivations.

Table 4. Log sample for the third use-case

Timestamp WFMEIT DAATE_Name Value Labels
Time1 click menu item Balance sheet Balance sheet Menu1
Time2 click textbox Cash_and_cash_equivalents 58625 XA
Time3 click button Add_cash_and_cash_equivalents cash_and_cash_

equivalents
Add_XA

Time4 click menu item Investment Investment Menu2
Time5 click textbox investment_value 100000 XB
Time6 click button Minus Minus
Time7 click button Add_investment_value investment_value Add_XB
Time8 click button =cash_and_cash_equivalents –

investment_value
41375 = XA – XB

Time9 click menu item Balance sheet Balance sheet Menu1
Time10 click textbox Receivables 49096 XC
Time11 click button Add_receivables receivables Add_XC
Time12 click textbox short_term_debts 82761 XD
Time13 click button Minus Minus
Time14 click button Add_ short_term_debts short_term_debts Add_XD
Time15 click button = receivables - short_term_debts -33665 = XC – XD
Time16 click button Add_(cash_and_cash_

equivalents – investment_value=)
(cash_and_cash_
equivalents –
investment_value=)

Add_(XA -
XB=)

Time17 click button Plus Plus
Time18 click button Add_(receivables -

short_term_debts=)
(receivables -
short_term_debts =)

Add_(XC -
XD=)

Time19 click button =(cash_and_cash_equivalents –
investment_value=) +
(receivables – short_term_debts=)

7710 =(XA - XB=)
+ (XC - XD=)

Informatica Economică vol. 15, no. 4/2011 92

In this use-case, the basic data element set
consists of XA, XB, XC and XD, the derived
data element set consists of OUTA, OUTB
and OUTC and the operation set contains
four items (see Fig. 12). The most important
part is how the algorithm recognizes the
elements from derived data element set. In
the decision logs in Table 4 and Error!
Reference source not found. the 19th record is
labeled OUTC. The formula used to derive it

is =(cash_and_cash_equivalents –
investment_value=) + (receivables –
short_term_debts=). If we replace the names
of basic data elements with XA, XB, XC and
XD we get the formula =(XA - XB=) + (XC
- XD=). Going through the derived data
element set we recognize that OUTC consists
of OUTA added to OUTB in the same way as
explained in the previous use-case.

Fig. 12. Model of the third use case

Fig. 12 shows a more strucrtured decision
process. One can see that it resembles a tree
with intermediary data aggregations. The
same result can be calculated without the use
of the intermediary OUTA and OUTB. We
are not interested in the result but on how the
decision maker gets to it.
In the last use-case, as shown in Fig. 13, one
element, whether basic or derived, may
belong to one or more operations. In our

case, the basic data elements XB
(customers_invoices_value) and XC
(cash_paid_to_employees_incl_taxes) are
used in two different operations (XB is used
once with XA when OUTA is calculated and
once with OUTB when OUTD is calculated;
while XC is used once with XD when OUTB
is calculated and once with OUTA when
OUTC is calculated).

Table 5. Logged data of the fourth use case

Timestamp WFMEIT DAATE_Name Value Labels
Time1 click menu item Trail Balance Trial Balance Menu1
Time2 click textbox Suppliers_invoices_value 73312 XA
Time3 click buton Add_suppliers_invoices_

Value
suppliers_invoices_
value

Add_XA

Informatica Economică vol. 15, no. 4/2011 93

Time4 click buton Minus Minus
Time5 click textbox customers_invoices_value 48943 XB
Time6 click buton Add_customers_invoices_

value
customers_invoices_
value

Add_XB

Time7 click buton = suppliers_
invoices_value -
customers_invoices_value

24369 = XA – XB

Time8 Click menu Cash Flow Cash Flow Menu2
Time9 click textbox cash_paid_to_employees_

incl_taxes
3005 XC

Time10 click buton Add_cash_paid_to_
employees_incl_taxes

cash_paid_to_
employees_incl_taxes

Add_XC

Time11 click buton Plus + Plus
Time12 click textbox Paid_vat 538 XD
Time13 click buton Add_paid_vat Paid_vat Add_XD
Time14 click buton = cash_paid_to_

employees_incl_taxes +
paid_vat

3543 = XC + XD

Time15 click buton Add_(suppliers_
invoices_value -
customers_invoices_value
=)

(suppliers_
invoices_value-
customers_invoices_
value=)

Add_(XA –
XB=)

Time16 click buton Minus - Minus
Time18 click buton Add_cash_paid_to_

employees_incl_taxes
cash_paid_to_
employees_incl_taxes

Add_XC

Time19 click buton =(suppliers_invoices_
value - customers_invoices
_value =) -cash_paid_to_
employees_incl_taxes

21364 =(XA - XB=) –
XC

Time20 click buton Add_customers_
invoices_value

customers_invoices
_value

Add_XB

Time21 click buton Minus -
Time22 click buton Add_(cash_paid_to_

employees_incl_taxes=) +
paid_vat

cash_paid_to_
employees_incl_taxes
+ paid_vat=

Time23 click buton = (cash_paid_to_
employees_incl_taxes=) +
paid_vat

45400

The resulting DDM in Fig. 13 shows that the
basic data element set consists of XA, XB,
XC and XD and derived data element set
consists of OUTA, OUTB, OUTC and
OUTD. The components are obtained like we
explained before by separating each derived
data item and looking for its components in
the basic or derived data element set.

If one takes a closer look at the model in Fig.
13 it is obvious that the decision maker is
exhibiting a structured process. It can be
easily observed that in-depth knowledge of
the relationship between the data elements is
made explicit by the model. It is also
observable in the model, the criterions used
in choosing the decision alternative.

Informatica Economică vol. 15, no. 4/2011 94

Fig. 13. Structured process

5 Conclusions
We argued that the decision maker is not
always capable to consciously explain the
decision process he is performing. Our
approach gets large numbers of decision
makers to reason on the same decision data
and scenario in order to pick one of the
provided decision alternatives. We log the
behavior of the decision maker and extract a
model from those logs. We argue that our
approach is able to explicitly depict, in a
model, the relationships between the data
items used in making the decision. At the
core of our approach is the algorithm that
automatically mines some logs (of user
interaction with simulation software) and
extracts a model of the data perspective of a
decision process. This paper demonstrated, in
detail, how exactly is a decision log file
converted into a Decision Data Model
(DDM-XML file).
The first part of the paper was dedicated to a
detailed presentation of the proposed mining
algorithm. We started by introducing the
outline of the algorithm (as pseudo-code) and
provided detailed insights into the functions
we used. In the second part of the paper, we
set to prove the algorithm’s robustness by
analyzing different patterns that occur most
frequently in the real decision logs (and
subsequently in the mined models). We
looked at increasingly complex patterns by

showing how data is stored in the logs and
explained how the decision data model is
extracted by our algorithm.
Once a DDM is created for each decision
maker, we aim to extend our research by
aggregating individual DDMs into a common
reference model. It is also possible to
compare individual DDMs or to compare one
individual DDM with an aggregated DDM
by calculating a score of similarity between
the models. Another direction for future
research is aimed at increasing the quality of
the logs by employing eye-tracking. This will
require some future adaptations and
extensions of the algorithm presented and
evaluated in this paper.

Acknowledgement
This work was supported by CNCSIS-
UEFISCSU, project number PN II – RU - TE
52/2010 code 292/2010.

References
[1] H.A. Simon, The New Science of

Management Decision. Harper and Row,
New York, 1960

[2] M. Hu, E.-P. Lim, A. Sun, H. W. Lauw
and B.-Q. Vuong, „Measuring article
quality in wikipedia: models and
evaluation”, Proceeding CIKM '07
Proceedings of the sixteenth ACM

Informatica Economică vol. 15, no. 4/2011 95

conference on Conference on information
and knowledge management, 2007

[3] W.M.P van der Aalst and K. van Hee,
„Workflow Management: Models,
Methods and Systems”, MIT Press,
Cambridge, 2002

[4] W. M.P.van der Aalst, Maja Pesic and
Minseok Song, „Beyond Process Mining:
From the Past to Present and Future”,
Proceedings of the 22nd International
Conference on Advanced Information
Systems Engineering (CAiSE'10), volume
6051 of Lecture Notes in Computer
Science, pp. 38-52, Springer-Verlag,
Berlin, 2010

[5] W.M.P. van der Aalst, B.F. van Dongen,
J. Herbst, L. Maruster, G. Schimm and
A.J.M.M. Weijters, Workflow Mining: A
Survey of Issues and Approaches, Data
and Knowledge Engineering. no. 47(2),
pp. 237-267, 2003

[6] W.M.P. van der Aalst, A.J.M.M.
Weijters, L. Maruster, Workflow Mining:
Discovering Process Models from Event
Logs. IEEE Transactions on Knowledge
and Data Engineering 16(9), 1128–1142,
2004

[7] A.K.A. de Medeiros, A.J.M.M. Weijters,
and W.M.P. van der Aalst, „Genetic
Process Mining: An Experimental

Evaluation”. Data Mining and Knowledge
Discovery. 14(2), 245-304, 2007

[8] C.W. Gunther, W.M.P. van der Aalst,
Fuzzy Mining: Adaptive Process
Simplification Based on Multi-
perspective Metrics. In: Alonso, G.,
Dadam, P., Rosemann, M. (eds.) BPM
2007. LNCS, vol. 4714, pp. 328–343.
Springer, Heidelberg, 2007

[9] I. Vanderfeesten, “Product-Based Design
and Support of Workflow Processes”.
Eindhoven University of Technology,
Eindhoven, 2009

[10] R. Petruşel, I. Vanderfeesten, C.C.
Dolean and D. Mican, „Making Decision
Process Knowledge Explicit Using the
Decision Data Model”, Ed. BIS 2011,
LNBIP 87, pp. 172-184, 2011, Springer-
Verlag Berlin Heidelberg, 2011.

[11] R. Petruşel, D. Mican and C.C. Dolean,
„Implementing a Decision-Aware System
for Loan Contracting Decision Process”,
Informatica Economica Journal, Vol. 15,
no. 1/2011, pp. 167-182.

[12] R. Petruşel, I. Vanderfeesten, C. Dolean
and D. Mican, „Making Decision Process
Knowledge Explicit Using the Product
Data Model”, Beta working paper series,
WP 340, Technische Universiteit
Eindhoven, 2011.

Cristina-Claudia DOLEAN has graduated the Faculty of Economics and
Business Administration, Babeş Bolyai University, Cluj-Napoca in 2008. She
holds a bachelor degree in Business Informatics and a master degree in E-
Business. She is currently a PhD student in the field of Business Informatics.
Her current research interest include Process mining and Workflow
Management.

Răzvan PETRUŞEL holds a Ph.D. in Cybernetics, Statistics and Business
Informatics starting 2008. He started in 2003 as a full-time Ph.D. student at
the Business Information Systems Department, Economical Sciences and
Business Administration Faculty, in Babeş-Bolyai University of Cluj-
Napoca. In 2007 he became an assistant professor and since 2009 he holds
the current position as lecturer. His research is focused on DSS Specification,
Modeling and Analysis; Process Mining; Workflow Management; and

Decision Mining and Analysis.

